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This paper obtains bright 1-soliton solutions in optical metamaterials by the aid of traveling wave hypothesis. There are 
three types of nonlinear media that are considered. They are Kerr law, parabolic law and log law nonlinearity. There are 
several constraint relations that are obtained for soliton solutions to exist. 
 
(Received November 11, 2014; accepted March 19, 2015) 

 
Keywords: Solitons, Metamaterials, Integrability, Traveling waves 

 

 
 

1. Introduction 
 

The dynamics of solitons in optical metamaterials is a 

very demanding area of research at present times. Several 

overwhelming results have been reported in the past few 

decades [1-20]. It is believed that waveguides, made up of 

metamaterials, will transmit solitons across the globe in 

future. There are quite a few results that are already 

reported in this context. Therefore it is necessary to dig a 

little deeper into this area of research to unearth 

unprecedented novelty. This paper will therefore extract 

exact bright solitons by using the most elementary 

approach, namely the traveling wave hypothesis that gives 

waves of permanent form. 

There are several integration tools applied to extract 

exact 1-soliton as well as multiple soliton solutions to the 

model. A few of them are simplest equation approach [4, 

14], ansatz method [3,4], F-expansion scheme [6], 

functional variable method [5], first integral approach [5] 

and several others. This paper will retrieve bright 1-soliton 

solutions by the traveling wave hypothesis. The model 

equation is nonlinear Schrödinger's equation (NLSE) with 

a few perturbation terms. There are three types of 

nonlinear media that will be studied in this paper. They are 

Kerr law, parabolic law and log law nonlinearity. It must 

be noted that traveling wave hypothesis fails to retrieve 

soliton solutions to NLSE with power law and dual-power 

laws. 

 

 

 

 

2. Governing equation 
 

The dimensionless form of NLSE in optical 

metamaterials is given by [3-6]: 
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Eq. (1) is the NLSE that is studied in the context of 

optical metamaterials. The independent variables are  x  

and t  that respectively represent the spatial and temporal 

variables, while the dependent variable is ),( txq  which 

represents the complex valued wave envelope. Also, a is 

the coefficient of group velocity dispersion (GVD). The 

functional F represents the nonlinear term. On the right 

hand side,   is due to inter-modal dispersion,   

represents the self-steepening term to avoid formation of 

shock waves,   is the nonlinear dispersion. The j  for 

3,2,1j  terms appear in the context of metamaterials 

[3-6].  

The functional F  represents, in general, non-Kerr 

law nonlinear media and is a real-valued algebraic 

function and the smoothness of the complex function 

CCqqF :)(
2

 is needed. Considering the complex 

plane C  as a two-dimensional linear space 
2R , the 
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function qqF )(
2

 is k  times continuously 

differentiable, so that [12, 13] 
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The traveling wave hypothesis will be introduced in 

the following section and 1-soliton solution will be 

obtained for three forms of the nonlinear function F .  

 
3. Traveling wave hypothesis 
 

The starting hypothesis to address (1) is given by [2, 

12, 13] 

 
)()(),(   txievtxgtxq              (3) 

 

where v  represents the speed of the soliton and the 

function g  is the amplitude component of the complex 

valued function ),( txq . From the phase component,   

is the soliton frequency,   is the soliton wave number 

and   is the phase constant. Substituting (3) into (1) and 

decomposing into real and imaginary parts lead to  
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In (4) and (5), the notations dsdgg   and 

22 dsgdg  are used where 

 
vtxs                                   (6) 

 

From the real part equation, setting the coe_cients of 

linearly independent functions to zero gives 

 

01                                      (7) 

and  

032                                 (8) 

 

Consequently, from the imaginary part equation it 

follows from the coe_cients of linearly independent 

functions 

 

023                         (9) 

 

and the speed of the soliton falls out to be 

 av 2                          (10) 

 

which is valid for all forms of nonlinear media. Therefore 

with these parameter settings, the governing equation (1) 

modifies to  
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and the real part equation simplifies to 
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The traveling wave hypothesis of this equation will 

now be studied. Multiplying both sides of (12) by g  and 

integrating leads to 
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upon simplification after choosing the integration constant 

to be zero, since the search is for a soliton solution. The 

next three subsections will focus on the integrability of the 

ordinary differential equation (ODE) given by (13) for 

Kerr law, parabolic law and log law where the functional 

F  is known.  

 

 

3.1 Kerr Law 

 

For Kerr law nonlinearity [1, 3], 

 

buuF )(                                  (14) 

 

for a real constant b so that (11) reduces to 
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and hence the real part ODE gives 
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After separating variables in (16) and integrating leads 

to 
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where  
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Hence, bright 1-soliton solution to (15) is given by 
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where the amplitude ( A ) of the soliton and the inverse 

width ( B ) of the soliton are given by (18) and (19) 

respectively. It must be noted that these bright solitons 

exist provided the constraints 
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and  

0)( 2   aa                   (22) 

 

 

4. Parabolic law 
 

In this case, 

 
2
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where 1b  and 2b  are real-valued constants [2, 8, 12, 13]. 

Therefore, (11) takes the form 
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and hence the real part ODE gives 
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After separating variables in (25) and integrating leads 

to 
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Hence, bright 1-soliton solution to (24) is given by 
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where the amplitude ( A ) of the soliton and the inverse 

width ( B ) of the soliton are given by (27) and (28) 

respectively. This case introduces a new parameter D   

that is given by (29). The condition for the existence of the 

bright soliton is guaranteed for 
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and  (22) which follows from (27) or (29) and (28). 

 
4.1 Log law 

 
Here, 

)ln()( sbsF                          (32) 

 

for real valued constant b , so that equation (11) reduces 

to [2, 12, 13] 
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and hence the real part ODE gives 
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After separating variables in (34) and integrating leads 

to 
22 )()()( vtxBAevtxgsg           (35) 

 

where  
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Hence, Gausson solution to (33) is given by 
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where the amplitude ( A )of the Gausson and the inverse 

width ( B ) of the Gausson are given by (36) and (37) 

respectively. It must be noted that these bright solitons 

exist provided the constraints 

 

0b                                (39) 
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hold respectively for (36) and (37). The inequation (40) 

implies that both GVD and nonlinearity must maintain the 

same sign for Gaussons to exist. 

 

 

5. Conclusions 
 

This paper recovered bright 1-soliton solution, in 

optical metamaterials, by the aid of travelling wave 

hypothesis. This integration scheme is not applicable to 

retrieve bright soliton solutions for power law and dual-

power law media. Also, it must be noted that there are 

soliton solutions that are reported earlier by this same 

integration scheme, namely traveling wave hypothesis 

applicable to five forms of nonlinearity that includes 

power law and dual-power law [2, 12, 13]. However, for 

optical metamaterials, the situation is a little different. The 

governing equations have parameters that obey constraint 

relations, as discussed in Section-3, and thus prevent 

integrability by travelling wave hypothesis for power law 

and dual-power law. 

Another disadvantage of this scheme is that one can 

retrieve only bright 1-soliton solutions and not dark or 

singular optical solitons. Later, the focus will be on the 

application of additional integration techniques to retrieve 

dark and singular solitons along with bright-dark combo 

optical solitons. The results of those research will be 

reported soon. Additionally, soliton perturbation theory as 

well as quasi-stationary soliton solutions will be obtained. 

Finally, the quasi-particle theory, for suppression of intra-

channel collision, will also be developed and reported. 
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